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Limit of Classical Projections of Quantum
Mechanics as " """ ® 0

Marcel PolakovicÏ 1
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The convergence of the Hamiltonians of classical projections to the Hamiltonian
of the classical limit is investigated. The convergence of dynamics is shown for
Hamiltonians generated by a certain class of functions, in particular by functions
from the Schwartz space.

1. INTRODUCTION

The relationship between classical mechanics (CM) and quantum
mechanics (QM) has been investigated from the very beginning of QM. QM

is characterized by a universal physical constant (Planck constant " ) which

is so small that it can be practically neglected with respect to usual classical

effects. This fact gives us one of the keys for the relation between QM and

CM. In a sense, CM should be a limit of QM for " ® 0. Hepp (1974) proved

that the time evolution of the usual classical limit can be obtained as a limit
(for " ® 0) of the time evolutions of the mean values of position and

momentum of some quantum systems parametrized by the value of " where

the initial states of these systems are conveniently chosen on the orbit of

coherent states.

The Hamiltonian of the usual classical limit can be obtained as a limit

(for " ® 0) of the Hamiltonians of the ª classical projections of QMº parame-
trized by the value of " (BoÂna, 1983). The theory of classical projections

was developed, e.g., by BoÂna (1986). In the work of BoÂna (1983), this limit

is investigated for the usual Hamiltonian with potential energy, and this

assertion is indicated for another form of the Hamiltonians. A general method
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for finding classical limits in arbitrary quantum theories is developed in the

work of Yaffe (1982). Some of the results mentioned there are similar, but

not identical, to those presented in the present paper.
Here we shall investigate the limit " ® 0 for a certain class of Hamiltoni-

ans (Section 2). In fact we prove more, namely the uniform convergence.

For Hamiltonians generated by a certain class of functions (in particular

by functions from the Schwartz space) we prove even more, namely the

convergence of the time evolutions of the classical projections to the time

evolution of the classical limit for " ® 0 uniformly on compacts (Section
3). This can be considered to be the main contribution of the present paper.

2. THE CONVERGENCE OF HAMILTONIANS

Let U be a unitary irreducible representation of the Weyl±Heisenberg

group in a Hilbert space *. Its generators X0, . . . , X2n can be chosen so that
the canonical commutation relations (CCR) are satisfied:

X0 5 " I

X i 5 Q i , i 5 1, . . . , n

X i 5 P i 2 n, i 5 n 1 1, . . . , 2n

The CCR can be realized in SchroÈ dinger form. Then

Qj w (q) 5 qj w (q)

Pj w (q) 5 2 i "
-

- qj

w (q)

The representation U can be considered as a projective representation of the

additive group R2n and

Ux 5 exp 1 i

"
X ? S ? x 2

where X ? S ? x 5 Xj Sj k xk and S is the standard symplectic 2n 3 2n matrix
with elements Sjk defined by

Sjj+n 5 2 Sj+nj 5 1, j 5 1, 2, . . . , n, Sj k 5 0 otherwise

and

X 5 (X1, . . . , X2n)

x 5 (x1, . . . , x2n) 5 (q, p)



Classical Projections as "" ® 0 2925

where

q 5 (q1, . . . , qn)

p 5 ( p1, . . . , pn)

so x P R2n. Let now the Planck constant to approach zero, so instead of "
we write l 2 " , l ® 0, everywhere. The generators of the corresponding

representation of CCR will be chosen as

Q l
j w (q) 5 l qj w (q)

P l
j w (q) 5 2 i l "

-
- qj

w (q)

which means

Q l
j 5 l Qj , P l

j 5 l Pj

The corresponding representation will appear as

U l
x 5 exp 1 i

l 2 "
X l ? S ? x 2 5 exp 1 i

l "
X ? S ? x 2 5 exp 1 i

"
X ? S ?

x

l 2 5 U(x/ l )

Now let c be a convenient analytic vector of the representation U. The orbit
O l

c 5 U l (G) c will be a symplectic manifold parametrized by a parameter x
P R2n, and diffeomorphic to R2n. We can consider a classical Hamiltonian

h l (x) 5 (U l
x c , H l U l

x c )

on this orbit, where H l is a version of formally given quantum Hamiltonian

H l 5 f (X l
1, . . . , X l

2n)

where f is a real function. This classical system is called a classical projection.

BoÂna (1986) mentions that for H l polynomial in X l
j

lim
l ® 0

h l (x) 5 h(x) : 5 f (x) (1)

holds. In the present paper we shall prove this statement for a convenient

class of functions f.
The main technical problem is the definition of the operator f (X l

1, . . . ,
X l

2n) for given real function f. The difficulties arise because of the noncommu-

tativity of the operators X l
i . We shall use the Weyl method for symmetrization

described, e.g., by Berezin and Shubin (1983). It uses the Fourier transform.

Using these techniques we shall seek functions f for which (1) will hold.
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Let

f (q, p) 5 # ei(rq 1 sp) w (r, s)d nr d ns (2)

where

r 5 (r1, . . . , rn), s 5 (s1, . . . , sn)

and w (r, s) is the Fourier transform of the function f. Let, according to Berezin

and Shubin (1983),

f (Q l , P l ) 5 # exp(i(rQ l 1 sP l )) w (r, s)d nr d ns

where

(Q l , P l ) 5 (Q l
1, . . . , Q l

n, P l
1, . . . , P l

n) 5 (X l
1, . . . , X l

2n) 5 X l

Hence

f (Q l , P l ) 5 # ei l (rQ 1 sP) w (r, s)d nr d ns

We give now the correct definition of this formal expression. Let the operator

f (Q l , P l ) be defined by

f (Q l , P l ) f 5 # ei l (rQ 1 sP) f w (r, s)d nr d ns (3)

where the right-hand side is defined as the Bochner integral.

The main result of this section is the following:

Theorem 1. Let w P L1(R2n) and f be given by (2). Then the relation

(1) holds, where H l 5 f (Q l , P l ) is a bounded operator determined by (3).

The convergence in (1) is the uniform convergence on the whole R2n.

Proof. Let us examine for which vectors f and which functions w the

integral (3) converges. Obviously if it converges, then w P L1(R2n), because
according to a well known theorem (see, e.g., Blank, Exner, Havlõ ÂcÏ ek, 1993,

Theorem 3.7.4c) the Bochner integrability of the function ei l (rQ 1 sP) f w (r, s)
implies the Lebesgue integrability of the norm

i ei l (rQ 1 sP ) f w (r, s) i 5 i f i ) w (r, s) )
i.e., w P L1(R2n). It is well known that the integral converges for w P
C `

0 (R2n) for all f P *.

We show that for functions w P L1(R2n) this Bochner integral converges

for arbitrary vector f . According to the Lebesgue dominated convergence
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theorem, a function w P L1(R2n) is integrable. The function (r, s) j ei l (rQ 1 sP) f
is continuous (from the Weyl relations), so it is uniformly continuous on

compacts. We construct a sequence of simple functions Sk : R2n ® * such
that pointwise Sk ® ei l (rQ 1 sP ) f . For arbitrary k P N consider a 2n-dimensional

cube Ck : 5 ^ 2 k, k & 2n. Because of the uniform continuity on compacts, for

arbitrary k there exists d k . 0 such that if the Euclidean distance between

the points (r, s) and (r8, s8) of R2n is less than d k, then

i ei l (rQ 1 sP ) f 2 ei l (r8Q 1 s8P) f i ,
1

k

The cube Ck can be considered as the union

Ck 5 ø
N

j 5 1
Aj

of sets with diameters less than d k . For each j P {1, . . . , N} we choose

arbitrary (r, s) P Aj fixed and for each (r8, s8) P Aj we put

Sk(r8, s8) : 5 ei l (rQ 1 sP) f

This defines the function Sk on Ck . On the exterior of Ck we simply put Sk [
0. So we constructed a simple function Sk such that for (r, s) P Ck

i Sk(r, s) 2 ei l (rQ 1 sP) f i ,
1

k

This implies the pointwise convergence

Sk ® ei l (rQ 1 sP) f

In the same way, for the Lebesgue integrable function w there exists a sequence

of simple functions sk: R2n ® C such that sk ® w pointwise. Then Sksk: R2n ®
* is a sequence of simple functions and pointwise

Sksk ® ei l (rQ 1 sP) f w (r, s)

According to a well-known theorem from the theory of the Bochner integral

(see e.g., Blank, Exner, and Havlõ ÂcÏ ek, 1993, Theorem 3.7.4c) the Bochner

integral converges if and only if the Lebesgue integral of the norm con-

verges. However,

i ei l (rQ 1 sP) f w (r, s) i 5 i f i ) w (r, s) ) P L1(R2n)
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because w P L1(R2n). That means for a function w P L1(R2n) the considered

Bochner integral converges for arbitrary vector f . Moreover,

i f (Q l , P l ) f i 5 Z Z # ei l (rQ 1 sP) f w (r, s)d nr d ns Z Z
# # i ei l (rQ 1 sP) f w (r, s) i d nr d ns 5 i f i # ) w (r, s) ) d nr d ns

from which according to w P L1(R2n) the boundedness of the operator

f (Q l , P l ) follows.

So for the construction of the operator f (Q l , P l ) from (3) the necessary

and sufficient condition is w P L1(R2n). Because f is the inverse Fourier

transform of w , the Riemann±Lebesgue lemma implies the condition f P
C ` (R2n), which implies

lim
i x i ® `

f (x) 5 0

Therefrom we immediately see that, for instance, the polynomials do not

belong among these functions.

We need to calculate

h l (x) 5 (U l
x c , f (Q l , P l )U l

x c )

We shall prove in the Appendix the relation

h l (x) 5 # ( c , ei l (rQ 1 sP) c )ei(rq 1 sp) w (r, s)d nr d ns

The Weyl relations imply that the function ( c , ei l (rQ 1 sP) c ) is continuous in

(r, s), so it is measurable. So for each l the function

g l (r, s) 5 ( c , ei l (rQ 1 sP) c )ei(rq 1 sp) w (r, s)

is measurable and

) g l (r, s) ) # i c i 2 ) w (r, s) ) 5 ) w (r, s) )
Because w P L1(R2n), we may use the Lebesgue dominated convergence

theorem and we have

) h l (x) 2 f (x) )

# # ) ( c , ei l (rQ 1 sP) c ) 2 1 ) ) ei(rq 1 sp) w (r, s) ) d nr d ns

# # ) ( c , ei l (rQ 1 sP) c ) 2 1 ) ) w (r, s) ) d nr d ns ®
l ® 0

0
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because

lim
l ® 0

( c , ei l (rQ 1 sP) c ) 5 1

from the Weyl relations. We have then

lim
l ® 0

(U l
x c , f (Q l , P l )U l

x c ) 5 f (q, p)

uniformly on R2n if x 5 (q, p), which completes the proof.

3. THE CONVERGENCE OF DYNAMICS

The symplectic form for the classical projection with the Hamiltonian
h l is the natural restriction V l of the canonical symplectic form V on the

projective Hilbert space P* to the orbit O l
c . BoÂna (1986) proves that if we

multiply the form V l with the constant l 2 " , we get exactly the standard

symplectic form dp Ù dq on R2n. From now on the classical projection with

the Hamiltonian h l will be considered with this standard symplectic form

on R2n.
We found out that the Hamiltonians h l (x) of the classical projections

for conveniently chosen functions f 5 h converge pointwise to the Hamiltonian

of the classical limit h(x). There arises a natural question about the conver-

gence of dynamics (time evolutions). Namely the Hamiltonians h l and h may

be considered to act on the same phase space R2n considered as the Euclidean

space, and one can ask whether for the identical initial conditions x l (0) 5
x(0) for corresponding time evolutions we will have x l (t) ® x(t). It can be

shown that under certain conditions the answer will be positive.

Theorem 2. Let

- h l

- xi

®
l ® 0

- h

- xi

(i 5 1, . . . , 2n)

uniformly on R2n. Then the time evolutions x l (t) of the systems with Hamilto-

nian h l (x) will uniformly converge for l ® 0 to the evolution x(t) of the

system with the Hamiltonian of the classical limit h(x) on the intervals ^ 0, t0 & ,
where t0 is arbitrary finite positive, such that all the evolutions exist for t P
^ 0, t0 & and the initial conditions are x l (0) 5 x(0) for all l sufficiently small.

Proof. For arbitrary small d i (i 5 1, . . . , 2n) there exists a m such that

for arbitrary l , m the following holds for all x P R2n:

Z - h l

- xi

2
- h

- xi Z # d i
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Moreover, if t # t0 and t0 is such that the trajectories x l (t), x(t) all exist for

l , m , then

i x l (t) 2 x(t) i # ! o
2n

i 5 1

(Di)
2

where

D i 5 t0 d i

is the maximum possible deviation between x l (t) and x(t) in the direction of

the ith coordinate axis.
Let t0 make sense [i.e., there exist the trajectories x l (t), x(t) for t , t0

where the initial conditions are x l (0) 5 x(0)]. Let e be arbitrary, small, and

positive. Then we can choose such small numbers d i such that for correspond-

ing values Di ,

! o
2n

i 5 1

(D i)
2 , e

holds. According to the previous considerations it is possible to find m small

enough that for l , m one has

Z - h l

- xi

2
- h

- xi Z # d i

Then for t # t0

i x l (t) 2 x(t) i , e

which completes the proof.

Now let us find such functions f for which

- h l

- xj

®
l ® 0

- h

- xj

uniformly on R2n. We obtain the functions - h l / - qj by a straightforward

calculation:

- h l

- qj

5 lim
l ® 0

h l (qj 1 l) 2 h l (qj )

l

5 lim
l ® 0 # ( c , ei l (rQ 1 sP) c )

exp(irj l) 2 1

l
ei(rq 1 sp) w (r, s)d nr d ns
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Using the Lebesgue dominated convergence theorem we can under certain

conditions go with the limit behind the integral. The following holds:

lim
l ® 0

exp(irj l) 2 1

l
5 irj

Because of

lim
t ® 0 Z eit 2 1

t Z 5 1, lim
t ® ` Z eit 2 1

t Z 5 0,

with respect to the continuity of the function ) (eit 2 1)/t ) the supremum
supt P (0, ` ) ) (eit 2 1)/t ) 5 C exists. Then

Z exp(irj l) 2 1

l Z , Crj

so we can use the Lebesgue dominated convergence theorem under the

condition ) rj w (r, s) ) P L1(R2n). Namely

) ( c , ei l (rQ 1 sP) c ) ) Z exp(irj l) 2 1

l
ei(rq 1 sp) w (r, s) Z # C ) rj w (r, s) )

so under the assumption of the Lebesgue integrability of the function ) rj w (r, s) )
we have

- h l

- qj

5 # ( c , ei l (rQ 1 sP) c )irj e
i(rq 1 sp) w (r, s)d nr d ns

Analogously we compute also - h l / - pj . It will be sufficient to prove the

uniform convergence on R2n

- h l

- xj

®
- h

- xj

where analogously to the previous we obtain

- h

- xj

5 # iyje
i(rq 1 sp) w (r, s)d nr d ns

The pointwise convergence follows from the Lebesgue theorem. The new

variables yj used in this expression are defined by

yj 5 rj , yn+j 5 sj , i 5 1, . . . , n
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We show the uniform convergence

- h l

- xj

®
- h

- xj

on the whole space (R2n). The following holds:

Z - h l

- xj
(x) 2

- h

- xj
(x) Z

5 Z # (( c , ei l (rQ 1 sP) c ) 2 1)iyj e
i(rq 1 sp) w (r, s)d nr d ns Z

# # ) ( c , ei l (rQ 1 sP) c ) 2 1 ) ) yj w (r, s) ) d nr d ns

Because of

) ( c , ei l (rQ 1 sP) c ) 2 1 ) # 2

we may use the Lebesgue theorem and conclude

lim
l ® 0 Z - h l

- xj

2
- h

- xj Z # lim
l ® 0 # ) ( c , ei l (rQ 1 sP) c ) 2 1 ) ) yj w (r, s) ) d nr d ns 5 0

which ends the proof of the uniform convergence. So we have proved the

following result:

Theorem 3. If the Fourier transform w of the function f satisfies w P
L1(R2n), yj w P L1(R2n), i 5 1, 2, . . . , 2n, then the dynamics x l (t) converges

uniformly for l ® 0 to x(t) on the intervals ^ 0, t0 & for the initial conditions

x l (0) 5 x(0). In particular, this condition is satisfied for arbitrary f P 6(R2n)
(Schwartz space).

Remark. If f P 6(R2n), then w P 6(R2n) , L1(R2n), and at the same

time yj w P 6(R2n) , L1(R2n).

APPENDIX

Let us compute

h l (x) 5 (U l
x c , f (Q l , P l )U l

x c ) 5 ( c , (U l
x)

2 1f (Q l , P l )U l
x c )
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Let us write

(U l
x)

2 1f (Q l , P l )U l
x 5 (U l

x)
2 1 1 # ei l (rQ 1 sP) w (r, s)d nr d ns 2 U l

x

5 # (U l
x)

2 1ei l (rQ 1 sP)U l
x w (r, s)d nr d ns

where the interchange of the action of the unitaries is possible due to the

definition of Bochner integral. Because

U l
x 5 Ux/ l

it is sufficient to write

(Ux/ l )
2 1ei l (rQ 1 sP )Ux/ l

We shall use the relation

Ux 1 y 5 exp 1 i

2 "
x ? S ? y 2 UxUy

which is given in BoÂna (1986). Therefrom

(Ux/ l )
2 1 5 exp 1 i

2 "
x

l
S 1 2 x

l 2 2 U 2 x/ l

Moreover

ei l (rQ 1 sP) 5 exp 1 i

"
" l (rQ 1 sP) 2 5 U " l ( 2 s,r)

where

( 2 s, r) 5 ( 2 s1, . . . , 2 sn, r1, . . . , rn)

Then

U 2 x/ l U " l ( 2 s,r) 5 U " l ( 2 s,r)U 2 x/ l exp 1 i

"
( " l )( 2 s, r)S 1 2 x

l 2 2
because

UxUy 5 UyUx exp 1 i

"
x ? S ? y 2
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So we have

U 2 x/ l U " l ( 2 s,r) 5 U " l ( 2 s,r)U 2 x/ l exp(i( 2 s, r)S( 2 x))

5 U " l ( 2 s,r)U 2 x/ l exp(i(s, 2 r)S(q, p))

5 U " l ( 2 s,r)U 2 x/ l e
i(rq 1 sp)

Finally

exp 1 i

2 " 1 x

l 2 S 1 2 x

l 2 2 U 2 x/ l Ux/ l

5 exp 1 i

2 " 1 2 x

l 2 S 1 x

l 2 2 U 2 x/ l Ux/ l 5 U0 5 I

so we have the result

(U l
x)

2 1f (Q l , P l )U l
x 5 # ei(rq 1 sp)ei l (rQ 1 sP) w (r, s)d nr d ns

so

h l (x) 5 # ( c , ei l (rQ 1 sP) c )ei(rq 1 sp) w (r, s)d nr d ns

where the last step is possible due to the properties of the Bochner integral.
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